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ABSTRACT

The effects of nonrandom leaf area distributions on surface flux predictions from a two-source thermal
remote sensing model are investigated. The modeling framework is applied at local and regional scales over
the Soil Moisture–Atmosphere Coupling Experiment (SMACEX) study area in central Iowa, an agricul-
tural landscape that exhibits foliage organization at a variety of levels. Row-scale clumping in area corn- and
soybean fields is quantified as a function of view zenith and azimuth angles using ground-based measure-
ments of canopy architecture. The derived clumping indices are used to represent subpixel clumping in
Landsat cover estimates at 30-m resolution, which are then aggregated to the 5-km scale of the regional
model, reflecting field-to-field variations in vegetation amount. Consideration of vegetation clumping
within the thermal model, which affects the relationship between surface temperature and leaf area inputs,
significantly improves model estimates of sensible heating at both local and watershed scales in comparison
with eddy covariance data collected by aircraft and with a ground-based tower network. These results
suggest that this economical approach to representing subpixel leaf area hetereogeneity at multiple scales
within the two-source modeling framework works well over the agricultural landscape studied here.

1. Introduction

Leaf area index (LAI) is a key input to remote sens-
ing models of land surface energy balance and carbon
exchange because vegetation plays an important role in
modulating these fluxes. It has become evident that the
way in which leaf area is distributed over a model grid
cell, whether homogeneously or clumped, can also be
important to some model evaluations. Productivity es-
timates, for example, may be affected by clumping be-
cause of a reduction in the canopy light-capturing ca-

pacity in comparison with that of homogeneous cano-
pies (Nouvellon et al. 2000; Chen et al. 2003). Subpixel
heterogeneity in leaf area distribution can also influ-
ence model partitioning of available energy because of
nonlinearities inherent in land–atmosphere interac-
tions, advection effects, and mismatch with other re-
mote sensing inputs (e.g., Bonan et al. 1993; Blyth 1995;
Giorgio and Avissar 1997; Koster and Suarez 1992a;
Kustas and Norman 2000a).

Several approaches to accommodating subpixel het-
erogeneity (here, focusing on LAI) in land surface
models have been explored in the literature. One is the
“patch” or “mosaic” approach, where a grid cell is seg-
regated into patches of effectively uniform conditions,
fluxes are computed independently for each patch, and
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the patch fluxes are then aggregated over the cell (e.g.,
Avissar and Pielke 1989; Koster and Suarez 1992b;
Blyth 1995). Another uses a probability density func-
tion describing the expected variability in a given land
surface parameter over the grid cell (Avissar 1991,
1992). A third approach to treating heterogeneity in
LAI is to incorporate a “clumping index” into equa-
tions governing surface temperature partitioning, radia-
tive transport through the canopy, and canopy wind
penetration (Kustas and Norman 1999a;b). The latter
has the advantage of being relatively simple and ge-
neric, applying the same equation set for both clumped
and homogeneous canopies without significant demand
for detailed subpixel information (other than a bulk
assessment of clumping). However, while the clumping
index approach has been successfully applied to rela-
tively small-scale patchiness (e.g., row crops or forest
canopies at the 100–102 m scale), it is not clear whether
it can be successfully extended to larger-scale hetero-
geneity (e.g., field-scale patchiness over 103 m scales).

Thermal remote sensing models can be particularly
sensitive to inhomogeneous distributions of vegetation
because clumping affects the relationship between tem-
perature and cover information and the overall energy
balance. In general, vegetation (relatively cool) is bet-
ter coupled with the atmosphere than is the underlying
soil substrate (generally hotter), and, therefore, the
contribution of a scene component to the system’s sen-
sible heat flux is not necessarily in proportion to its
contribution to the composite surface temperature. In
cells with significant clumping, more soil is visible to the
thermal sensor than the scene-averaged LAI would
suggest, and sensible heating may be overestimated.
Vegetation clumping will also modify the functional de-
pendence of apparent surface temperature on view
angle, which is caused by the variable obscuration of
the underlying bare soil when a canopy is viewed off
nadir (Vining and Blad 1992). The strength of this an-
gular dependence will depend on the spatial scale of
clumping, whether the bare patches are larger or
smaller than the typical canopy height (e.g., Blyth
1995).

In this paper, we study the effects of vegetation
clumping in an agricultural landscape on energy parti-
tioning in a thermal-based flux model, and explore the
efficacy of the clumping index approach at resolutions
of 30 m–5 km. The two-source model (TSM) of Norman
et al. (1995) has been successfully implemented over a
range of spatial scales—at local scales, using in situ
measurements of model boundary conditions (Norman
et al. 1995; Kustas and Norman 1997, 1999a,b, 2000b; Li
et al. 2005); at regional scales, using an atmospheric
boundary layer (ABL) model for energy closure

(Anderson et al. 1997; Mecikalski et al. 1999); and at
intermediate scales, using boundary conditions pro-
vided by the regional model (Norman et al. 2003;
Anderson et al. 2004b). The core two-source (soil �
vegetation) representation gives these models flexibil-
ity to simulate a much wider range in vegetation cover
fraction and thermal sensor view angle than can be ac-
commodated by comparable one-source models (see
discussion in Norman et al. 1995; Zhan et al. 1996;
Anderson et al. 1997).

This study uses ground-, aircraft-, and satellite-based
data collected during the Soil Moisture Experiment
2002 (SMEX02) and the related Soil Moisture–Atmo-
sphere Coupling Experiment (SMACEX; Kustas et al.
2005), which ran concurrently within the Walnut Creek
(WC) watershed just south of Ames, Iowa (Fig. 1). As
part of SMACEX, surface energy fluxes were measured
continuously at eddy covariance (EC) towers that were
distributed across the study area, and periodically along
tracks flown by research aircraft. Intensive measure-
ments of vegetation cover, height, and LAI were ac-
quired at 31 sampling sites across the watershed. In
addition, thermal-infrared (TIR) and visible (VIS)/
near-infrared (NIR) imagery from the Geostationary
Operational Environmental Satellite (GOES) and
Landsat were archived throughout the experiment.

The rapidly evolving mosaic of corn- and soybean
fields covering the WC study area provides a good test
bed for examining effects of subpixel clumping at sev-
eral levels of organization. On the Landsat thermal
pixel scale (60–120 m), subpixel clumping occurs on the
scale of crop rows prior to canopy closure. On the
GOES pixel scale (5–10 km), vegetation clumping is
manifested at the field scale because of differences in
crop type and planting date, particularly in the early
phases of crop development before full cover is at-
tained uniformly across the watershed (Fig. 1). With the
SMEX02/SMACEX datasets, we explore whether ac-
counting for clumping is necessary within the multiscale
TSM modeling suite. Techniques for characterizing
vegetation clumping in routine, regional-scale applica-
tions are discussed, including using multiangle satellite
measurements relating to canopy structure. The opera-
tional efficacy of these techniques will be explored in
future papers.

2. Model description

a. The two-source model (homogeneous canopy)

With the two-source approximation, the composite
directional radiometric temperature [TRAD(�)] of a het-
erogeneous scene is partitioned into soil and canopy
contributions (Ts and Tc) in proportion to the fractional
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vegetation cover f(�), which is apparent from the zenith
view angle � of the thermal sensor,

TRAD���4 � f���Tc
4 � �1 � f����Ts

4. �1�

For a homogeneous canopy with a spherical leaf angle
distribution and leaf area index F,

f��� 	 1 � exp��0.5F

cos� �. �2�

The exponential term in Eq. (2) is the “canopy gap
fraction” as given by the Beer–Lambert law—the frac-
tional area in the scene where bare soil can be viewed
through gaps between individual foliar elements within
the canopy.

The TSM balances the soil (subscript s) and the
canopy (c) energy budgets separately, computing the
system and component fluxes of net radiation (RN 	
RNc � RNs), sensible and latent heat (H 	 Hc � Hs and
LE 	 LEc � LEs), and ground heat conduction (G):

RN 	 H � LE � G

RNs 	 Hs � LEs � G

RNc 	 Hc � LEc . �3�

Extinction of net radiation within the canopy (RNc) is
approximated with an analytical formalism based pri-
marily on leaf absorptivity and LAI (Campbell and
Norman 1998), while G is parameterized as a fraction
(0.31) of the net radiation above the soil surface (RNs),
following Choudhury et al. (1994). Canopy and soil sen-
sible heat fluxes are computed from temperature gra-
dients over the series resistance network in Fig. 2a:

H 	 �cp

Tac � Ta

Ra

Hc 	 �cp

Tc � Tac

Rx

Hs 	 �cp

Ts � Tac

Rs
. �4�

Here, Ra is the aerodynamic resistance to turbulent
transport between the canopy and the reference height,
Rx is the bulk leaf boundary layer resistance, and Rs is
the resistance through the boundary layer above the
soil surface, while Tac is the so-called momentum aero-
dynamic temperature (Norman and Becker 1995), Ta is
the air temperature at the reference height, and 
cp is
the volumetric heat capacity of air. A modified Priest-

FIG. 1. Map of leaf area index over the Walnut Creek watershed (demarcated in gray), retrieved from
multispectral Landsat imagery from 1 Jul 2002. In general, the lower LAI fields on this date are soybean,
while higher LAI fields are corn. Rectangles locate fields where intensive vegetation data were collected.
EC data used in this study were from towers sited in eight of these fields (denoted with thicker rect-
angles; sites WC15 and WC16 had two towers each). Lines designate tracks flown by the Twin Otter
aircraft.
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ley–Taylor relationship (Priestley and Taylor 1972)
provides an initial estimate of canopy evapotranspira-
tion (LEc), and the soil evaporation rate (LEs) is com-
puted as a residual to the system energy budget. Details
regarding the TSM algorithm are given by Norman et
al. (1995), with further improvements by Kustas and
Norman (1999a, 2000b).

The series model formulation in Fig. 2a assumes that
soil and canopy fluxes interact; for example, sensible
heat from the soil surface warms the microclimate
within the canopy, thereby modifying Hc, and vice
versa. Furthermore, wind and radiation penetration to
soil surface (affecting Rs and RNs, respectively) are
modified by the presence of an overlying canopy. This
is in contrast with the patch approach, where all aspects
of bare soil and vegetated patch behavior are indepen-
dent (see Kustas and Norman 1999b).

b. Stress detection in the TSM

The TSM has been structured such that it will detect
thermal signatures of canopy and soil moisture defi-
ciency and reduce LEc and LEs accordingly. This ad-
justment process is demonstrated in Fig. 3, comparing
flux and temperature partitioning relative to a base case
with nonlimiting soil moisture. In this modeling exer-
cise, TRAD and Ta are held constant, while f(0) is varied

above and below the nominal value by an amount
�f(0). At �f(0) 	 0, the surface temperature is consis-
tent with that expected for healthy green vegetation at
the nominal cover fraction and with ample available
water. For a scene with denser cover, however (moving
to the right in Fig. 3), TRAD is too hot; the excess tem-
perature tends to accumulate in Ts because Tc is well
regulated by the canopy transpiration rate. The soil
Bowen ratio increases, as expected for a drying soil
surface.

Eventually LEs reaches 0, and, rather than allowing
condensation onto the soil at midday (unlikely), LEc is
subsequently throttled back from its potential rate. Be-
yond this limit, the high surface temperature (relative
to cover) is interpreted as being indicative of canopy
stress and stomatal closure, perhaps resulting from
moisture depletion in the root zone. Under ever higher
canopy cover (still moving right), soil sensible heat (Hs

	 RNs � G at this point) starts decreasing as the avail-
able energy at the soil surface continues to diminish,
and Ts stabilizes.

Physically inconsistent inputs of vegetation cover and
surface temperature to the TSM can mimic this stress-
induced model response. In remote sensing applica-
tions, TRAD and f can become grossly incompatible as a
result of image registration errors. Vegetation clumping
at subpixel scales introduces a more moderate mis-

FIG. 2. Schematic diagram representing the coupled (a) ALEXI and (b) DisALEXI modeling scheme, high-
lighting fluxes of sensible heat (H ) from the soil and canopy (subscripts c and s) along gradients in temperature (T ),
and regulated by transport resistances Ra (aerodynamic), Rx (bulk leaf boundary layer), and Rs (soil surface
boundary layer). DisALEXI uses the air temperature predicted by ALEXI at 50 m AGL (Ta) to disaggregate 5-km
ALEXI fluxes, given vegetation cover [ f (�)] and directional surface radiometric temperature [TRAD(�)] informa-
tion derived from high-resolution remote sensing imagery at look angle �. See Norman et al. (2003) for further
details.
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match between pixel-averaged cover and temperature
[�f(0) � 0], resulting in biased flux estimates: system
sensible heating will tend to be overestimated, while sys-
tem latent heating is less affected (by 50%, see Fig. 3).

c. Remote applications: ALEXI and DisALEXI

The TSM can be applied spatially across a landscape
using the mosaic approach of Koster and Suarez
(1992a), provided that the upper boundary condition in
air temperature (Ta) is defined at a height where con-
ditions are relatively uniform over the modeling do-
main (Fig. 2b). The atmospheric “blending height”
(Wieringa 1986; Mason 1988) will depend on the typical

length scale of surface heterogeneity within the scene,
but is generally on the order of 50–100 m, or so, above
ground level (AGL). In practice, however, air tempera-
ture measurements near the blending height are not
routinely available.

To extend the utility of the TSM from the field cam-
paign trials to routine spatial analyses, a nested model-
ing system has been employed in which a regional-scale
model provides boundary conditions for local-scale ap-
plications. For regional-scale flux mapping, the TSM
has been coupled with a simple model of ABL devel-
opment (McNaughton and Spriggs 1986), so that the air
temperature at the blending height is simulated and
consistent with the modeled surface fluxes (Fig. 2a).

FIG. 3. Sensitivity of TSM surface flux and temperature partitioning to changes in input cover fraction for a given
surface radiometric temperature (held fixed). Base case [�f (0) 	 0] represents conditions where surface tempera-
ture is consistent with healthy green vegetation at the nominal cover fraction (0.6), with nonlimiting soil moisture
conditions: (a) radiometric temperature, (b) net radiation and soil heat flux, (c) sensible heat, and (d) latent heat.
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This coupled model is referred to as the Atmosphere–
Land Exchange Inverse (ALEXI) model (Anderson et
al. 1997). The lower boundary conditions for ALEXI
are provided by TIR observations taken at two times
during the morning (1.5 and 5.5 h after local sunrise)
from a geostationary platform, such as GOES. The
ABL model relates the rise in air temperature at the
blending height during this interval, and the resulting
growth of the ABL, to the time-integrated influx of
sensible heating from the surface.

In the Disaggregated ALEXI (DisALEXI) algorithm
(Norman et al. 2003; Anderson et al. 2004b), the air
temperature field predicted by ALEXI at the second
GOES observation time (t2) is used to disaggregate the
GOES-scale fluxes (5–10-km resolution) to finer spatial
scales (Fig. 2b). The ALEXI-derived values of Ta serve
as upper boundary conditions, while the TSM is applied
to high-resolution (15 m–1 km) temperature and cover
data from satellites like Landsat, Advanced Space-
borne Thermal Emission and Reflection Radiometer
(ASTER), or Moderate Resolution Imaging Spectrora-
diometer (MODIS) that are collected over the same
scene. To evaluate model performance, the resulting
high-resolution flux predictions can be reaggregated us-
ing a source footprint–weighting scheme and compared
directly with tower or aircraft observations. Good
agreement at the footprint scale also provides indirect
validation of the aggregate 5-km ALEXI fluxes, which
are otherwise difficult to assess quantitatively.

3. Characterizing vegetation clumping

Equation (2) holds for homogeneous canopies where
the vegetation cover is relatively uniform across the
model grid cell area. To accommodate the nonrandom
leaf area distributions characteristic of agricultural and
other heterogeneous landscapes, the LAI in Eq. (2) can
be modified by a clumping index �,

f��� 	 1 � exp��0.5�F

cos� � �5�

(e.g., Nilson 1971; Chen and Black 1992; Chen and
Cihlar 1995; Kucharik et al. 1999). Lower values of �
indicate stronger clumping, while � 	 1 for a homoge-
neous canopy with a random dispersion of leaf area,
and � � 1 indicates more regularized distributions.

The apparent clumping index will typically vary with
view zenith angle � (Chen 1996; Kucharik et al. 1997;
Kucharik et al. 1999), attaining a minimum value at
nadir view (�0), and increasing toward some maximum
value (�max) at more oblique angles as the gaps be-
tween the foliage elements become obscured. In the
case of row crops and other stands with anisotropic

distributions, apparent clumping may also vary with
view azimuth angle �.

a. Small-scale (subpixel) clumping

Prior to closure, a row crop canopy can be thought of
conceptually as being a series of parallel tubes of veg-
etation, each of characteristic width w and height h, and
separated by the row spacing r. Of the total area within
an idealized field, a fraction fveg 	 w/r will have some
canopy cover, and 1 � fveg will be totally bare. For a
field with fveg 	 1/4 and an areally averaged LAI (F) of
1, the local LAI within the row will be FL 	 F/fveg 	 4.

The total fraction of the scene occupied by soil ( fsoil),
as viewed from overhead (� 	 0), is the sum of the
fractional bare area between the rows (1 � fveg) and the
area where soil is seen through gaps in the canopy
( fgap),

fsoil�0� 	 �1 � fveg� � fveg fgap � exp��0.5�0F

cos�0�
�,

�6�

where

fgap 	 exp��0.5FL

cos�0� �, �7�

again assuming a spherical leaf angle distribution. The
clumping index is the value that corrects Beer’s law at
the pixel scale [right-hand side of Eq. (6)] to provide for
the proper accounting of fsoil. Solving Eqs. (6)–(7) for
the clumping index gives �0 	 0.49 for the hypothetical
field described above. Approximate functional rela-
tionships describing the dependence of clumping index
on view zenith and azimuth angles [�(�, � )] for corn
and soybean row crops are given in the appendix.

b. Upscaling clumping indices

At scales exceeding the average plot size, the effec-
tive clumping index in agricultural settings will addi-
tionally reflect field-to-field contrasts in LAI. This com-
ponent will be independent of the view angle because
the effective scale of variation is much larger than the
vegetation height.

In this study, a bulk clumping index �G(�G, �G), rep-
resentative of the 5-km scale and view angle of a GOES
thermal pixel, is estimated by aggregating nadir-looking
Landsat data at 30-m resolution. The process is as fol-
lows:

1) Nadir view clumping at the sub-Landsat-pixel scale
(i.e., row-scale clumping) is estimated for corn and
soybean sampling sites as described in the preceding
section. These values depend on measurements of
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fractional row coverage ( fveg) and average LAI (F)
made in the field. Subpixel clumping at nadir view is
denoted as �s(0, 0).

2) Subpixel clumping values are corrected via Eqs.
(A1)–(A4) to the GOES view angle, giving values of
�s(�G, �G) for each sampled corn- and soybean
fields. These angular corrections do not involve any
additional in-field measurements (see the appen-
dix).

3) A typical subpixel clumping index for corn and soy-
bean is determined for each field-sampling date by
averaging over all fields of a given crop type.

4) A bulk clumping index is computed for each 5-km
GOES tile covering the Walnut Creek watershed in
a manner analogous to Eqs. (6)–(7). A given 5-km
tile contains Ntot 30-m Landsat cells, each of which
can be assigned an areally averaged value of LAI
based on observed vegetation indices. Of these Ntot

cells, N� are found to contain nonzero LAI, and 1 �
N� are completely bare at the 30-m scale. For each
tile then, fveg is computed as N� /Ntot, while F is the
tile-averaged LAI (�iFi/Ntot), and F i is the average
LAI in the ith cell. Then,

fsoil��G, �G� 	 �1 � fveg� � fveg fgap

� exp��0.5�G��G, �G�F

cos�G
�, �9�

where

fgap 	
1

N�
�
i	1

N�

exp��0.5�s,i��G, �G�Fi

cos�G
�. �10�

In Eq. (10), the gap fraction in each ith Landsat cell
is augmented by an estimate of subpixel clumping
�s,i(�G, �G), set to the nominal corn or soybean value
determined in step 3 (or other nominal value) based on
a 30-m land cover classification map. Completely bare
fields (preemergence or fallow) are accounted for in the
(1 � fveg) term.

c. Incorporating effects of clumping into the TSM

The clumping index modifies several terms within the
TSM (and ALEXI/DisALEXI) system of equations
(Kustas and Norman 1999a, 2000b). Clumping at the
view zenith angle of the thermal sensor reduces the
effective leaf area in Eq. (2), affecting the partitioning
of radiometric temperature and surface fluxes between
the soil and canopy. An analogous clumping index at
the solar zenith angle is included in canopy radiative
transfer equations, augmenting both RNs and G. We
also consider effects on wind speed inside the clumped
canopy and above the soil surface, and the associated

heat transfer resistances. Kustas and Norman (2000b)
describe how �0 modifies the in-canopy wind profile
coefficients of Goudriaan (1977), serving to increase Rx

and decrease Rs, and altering the partitioning of system
sensible heating. The clumping index, therefore, pro-
vides some degree of decoupling between large-scale
vegetated and bare patches, as would be expected.

4. Data

a. Field measurements

The SMACEX component of SMEX02 was con-
ducted from mid-June to mid-July 2002 within a 20 km
� 40 km area, including the Walnut Creek watershed
(Fig. 1). Within the WC study area, 21 corn- and 10
soybean fields were selected as sites for intensive veg-
etation sampling. Sampling occurred in four rounds and
included measurements of LAI, stand density, canopy
height, and row width and spacing. LAI data were ac-
quired with LAI-2000 Plant Canopy Analyzer (LI-
COR Inc., Lincoln, Nebraska) units, programmed to
sample the average LAI across the entire row width.
Field-averaged values of vegetation cover fraction var-
ied from 0 to 1 over the course of the experiment, with
large site-to-site variability (Fig. 4). See Anderson et al.
(2004a) for more detail regarding the SMEX02 vegeta-
tion datasets.

b. Satellite data

Throughout SMACEX, multiband imagery, acquired
with the GOES, Landsat-5 (L5), and Landsat-7 (L7)
satellites, were collected and archived. Days with clear
morning skies (required by ALEXI) occurred on day of
year (DOY) 167, 174, 178, 179, 181, 182, and 183 (later
dates were affected by smoke from western wildfires;
Walthall et al. 2004). Landsat overpasses with clear
views of the WC study area occurred on DOY 174 (L5),
182 (L7), and 189 (L7). Therefore, flux disaggregation
with DisALEXI could be performed for DOY 174 and
182.

1) SURFACE RADIOMETRIC TEMPERATURE

The coarse-resolution brightness temperature maps
used in ALEXI were obtained with the GOES-8 imager
within the 10.2–11.2-�m (band 4) window. Thermal
data are available every 15 min at an average zenith-
viewing angle of approximately 52°, in azimuth looking
27°W of north, and at a nominal spatial resolution of 5
km at the location of the SMEX02 study area. Atmo-
spheric corrections (French et al. 2003) were performed
using standard observations from the national radio-
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sonde network and a vegetation cover–dependent cor-
rection for surface emissivity (Mecikalski et al. 1999).

The Landsat TIR data used in the disaggregation
were extracted from band 6 imagery, which is acquired
at 120-m spatial resolution on L5 (DOY 174) and 60-m
resolution on L7 (DOY 182). The original level 1G
Thematic Mapper (TM) data were georegistered with
respect to road intersections, then atmospherically cor-
rected with the Moderate Spectral Resolution Atmo-
spheric Transmittance (MODTRAN) radiative transfer
model (Berk et al. 1998), using radiosonde data and
default aerosol profiles and adjusted for surface emis-
sivity variations (see Li et al. 2004 for further details).

2) VEGETATION COVER

Coarse-scale estimates of fractional vegetation cover
f(0) and cell-averaged LAI [from Eq. (2)] used in ALEXI
were derived from a biweekly composited Normalized
Difference Vegetation Index (NDVI) product gener-
ated with the Advanced Very High Resolution Radi-
ometer (AVHRR) at 1-km resolution (Eidenshink
1992). These NDVI values were scaled with

NDVI* 	
NDVI � NDVImin

NDVImax � NDVImin
; f�0� 	 �NDVI*�2

�11�

(Gillies and Carlson 1995), which reduces sensitivity to
atmospheric effects and AVHRR view angle. The scal-
ing limits NDVImin and NDVImax were selected as the
lower and upper 3% tails of the frequency distribution

of all NDVI values measured over the United States
from March to August, excluding pixels that were clas-
sified as water. The 1-km cover estimates were then
linearly averaged to the 5-km ALEXI grid. To obtain
LAI fields for arbitrary modeling dates, the two brack-
eting AVHRR composites were interpolated from their
biweekly midpoints.

For the disaggregation, LAI was retrieved from the
Normalized Difference Water Index (NDWI), NDWI
	 (NIR � SWIR)/(NIR � SWIR) (Gao 1996), com-
puted using 30-m resolution (on both L5 and L7) im-
agery from TM bands 4 (NIR) and 5 [shortwave infra-
red (SWIR)]. The retrieval relationship was developed
empirically by Anderson et al. (2004a) in comparison
with the in situ measurements of row-averaged LAI,
and yields a root-mean-square difference (rmsd) of 0.66
with minimal bias (Fig. 5a). Anderson et al. (2004a)
found that NDWI saturated at higher levels of vegeta-
tion cover than did NDVI, allowing for the better char-
acterization of LAI at high resolution under full-canopy
conditions.

The dense spatial distribution of ground observations
collected during SMACEX provides a unique opportu-
nity for the stepwise validation of remote LAI retrieval
up to the 5-km scale. The 30-m estimates of F based on
TM NDWI (validated directly with respect to ground
data; Fig. 5a) were averaged to the 5-km scale for com-
parison with AVHRR-based estimates over the WC
domain, yielding a rmsd of 0.23 and a bias of 0.03
(Fig. 5b). This upscaling exercise suggests that Eq. (11)
is giving a reasonable representation of cell-averaged
LAI at the 5-km scale, which will be important in es-

FIG. 4. Average vegetation cover fraction f (0) measured at each WC site as a function of
sampling date.
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tablishing the need for including clumping effects in the
regional model.

3) LAND COVER CHARACTERISTICS

At both coarse and finescales, satellite-derived frac-
tional cover estimates have been used in conjunction
with a gridded land surface classification to assign rel-
evant surface parameters, such as roughness and radio-
metric properties (see Mecikalski et al. 1999). Coarse-
scale assessments for ALEXI were based on the Uni-
versity of Maryland (UMD) 1-km Global Land Cover
Product (Hansen et al. 2000).

To define surface parameters for DisALEXI, we
used a supervised classification at 30-m resolution de-
veloped by Doraiswamy et al. (2004), based on multi-
temporal Landsat imagery. Within the watershed, corn
and soybean occupied 86% of the total area, with an
additional 7% that were roads, 4% grass, 2% trees, and
trace proportions of pixels classified as being urban and
alfalfa. Of the total area covered, corn occupied 48%
and soybean 52%.

c. Ancillary meteorological inputs

Ancillary atmospheric data required by the modeling
system include an estimate of wind speed (50 m AGL)
and an early morning atmospheric temperature profile
at each 5-km grid cell in the ALEXI domain. These
input fields are currently created with the analysis com-
ponent of a mesoscale model (in initialization mode)
using standard observations from the synoptic weather

and radiosonde networks. Downwelling solar and long-
wave radiation estimates were extracted from hourly
GOES-based products at 5-km resolution (Diak et al.
1996; Diak et al. 2000; Otkin et al. 2005). DisALEXI
was assigned meteorological inputs from the nearest
ALEXI grid cell.

d. Tower data

The EC data used here for validation were acquired
at 10 towers in the WC watershed (see Fig. 1). Of these,
five towers were located in cornfields, and five in soy-
bean fields, which is proportionally representative of
the general cropping census within the WC area. Each
tower made measurements of sensible, latent, and soil
heat flux, soil temperature and moisture for the 0–6-cm
layer, net radiation, air temperature, wind speed and
direction, relative humidity, and radiometric surface
temperature. For more details regarding the SMACEX
EC and supporting data, see Prueger et al. (2005).

e. Aircraft data

From 15 June to 6 July, the Twin Otter aircraft of the
Canadian National Research Council flew several mis-
sions over the WC study area on transects designed to
intersect many of the EC towers. Turbulent fluxes of
heat, water, CO2, ozone, and momentum were mea-
sured at an altitude of approximately 40 m on repeated
passes over six tracks ranging in length from 6 to 12 km
(Fig. 1). Details of the aircraft-based measurements are
given by MacPherson and Wolde (2002) and MacPher-
son et al. (2003).

FIG. 5. Comparison of (a) LAI measured in situ at sampling locations during SMACEX with values retrieved
from Landsat NDWI at 30-m resolution and (b) LAI retrieved from Landsat NDWI and AVHRR NDVI on DOY
174, 182, and 189, both aggregated to 5-km resolution.
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In addition, high spatial resolution visible, NIR, and
thermal imagery were collected periodically over the
WC area with the Utah State University (USU) air-
borne digital imaging system (Neale and Crowther
1994). In this study, USU imagery collected on DOY
167 were used to generate a high-resolution map of
LAI, supplementing Landsat-derived maps on DOY
174, 182, and 189 (see Anderson et al. 2004a for further
information).

5. Results and discussion

a. Vegetation clumping

Using ground-based measurements of row-averaged
LAI and fractional row coverage ( fveg) in Eqs. (6)–(7),
row-scale clumping indices at nadir view were devel-
oped around DOY 167, 182, and 189. These dates co-
incide with the available high-resolution aircraft/
Landsat LAI images (there was no vegetation sampling
around DOY 174). The time evolution in the average
�s(0, 0) for developing corn- and soybean fields is
shown in Fig. 6. Mean values range between 0.5 and 0.9,
with soybean generally showing stronger clumping
(lower �s), except near the beginning of the experiment
when the LAI in soybean was very low. Theoretically,
the clumping index should approach unity in the limits
of F 	 0 and large F.

The sub-30-m clumping indices at nadir view were ad-
justed to the GOES zenith and azimuth view angles (52°
and 27°W of north, respectively) using Eqs. (A1)–(A4)
(also plotted in Fig. 6). Corn and soybean row orienta-
tions in the WC area were east–west and north–south in

approximately even proportions. Therefore, values of
�s at � 	 27° and 90° � 27° 	 63° have been averaged
to represent a mean watershed value. Figure 6 indicates
that row-clumping effects are less important at the
GOES view angle than at nadir, as expected.

To obtain estimates of clumping at the scale of the
GOES pixel (�G), Landsat and aircraft LAI data on
DOY 167, 174, 182, and 189 were aggregated over 5-km
tiles using Eqs. (8)–(9), assuming subpixel clumping in-
dices for corn and soybean as described above (with
interpolated values for DOY 174). For comparison, �G

was determined both at nadir and at the GOES view
angle. Landsat pixels assigned to the road and urban
classes were assumed to have subpixel clumping of 0.5;
all other classes were assumed to have clumping of 0.9
at nadir and 1.0 at �G 	 52°. The 5-km estimates include
clumping on the field scale, and, therefore, approach
asymptotic limits that are smaller than the sub-30-m
values (Fig. 6). Over the course of SMACEX, nadir
view clumping at the watershed scale varied between
0.5 and 0.7.

b. ALEXI

To study the effects of vegetation clumping on
coarse-scale model fluxes, ALEXI simulations at 5-km
resolution were generated for seven clear mornings
during SMACEX assuming cases A: no vegetation
clumping, B: the “observed” 5-km clumping factor at
the GOES view angle, and C: clumping as would be
observed at nadir. Model flux components have been
spatially averaged over the WC domain for comparison
with average tower and aircraft fluxes acquired around

FIG. 6. Apparent clumping index at nadir view (� 	 � 	 0) and at the GOES view angle
(� 	 52°, � 	 27° west of north) as a function of date, at sub-30-m scales for corn and soybean
(�s), and at the 5-km scale (�G).
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the modeling time, t2 1045 LST. Cells containing the
city of Ames were excluded from the average, because
urban fluxes are not represented in the observational
datasets.

Comparisons between EC flux measurements and
model predictions are often complicated by a lack of
“closure” in the observed energy budget; typically, RN
� G � H � LE in EC datasets (Twine et al. 2000;
Wilson et al. 2002), while models inherently enforce
closure. To demonstrate the magnitude of this uncer-
tainty, we quote tower and aircraft H and LE fluxes
both as measured (unclosed) and with an energy budget
closure correction (closed) preserving the observed Bo-
wen ratio (Twine et al. 2000). The average G measured
at the EC tower sites has been used to close both the
tower and aircraft budgets.

The spatially averaged tower and aircraft EC fluxes
agree very well (Fig. 7), suggesting that these measure-
ment sets are reasonably representative of the actual
watershed-scale surface fluxes, and giving a measure of
observational uncertainty at this scale. When the un-
closed fluxes are compared, there is proportionally
greater scatter in the latent heat flux measurements (50
W m�2 or 16% of the average tower LE flux) than in
those of sensible heat (10 W m�2 or 10%). However,
enforcing closure in both datasets equalizes the propor-
tional scatter, reducing the rmsd in LE to 30 W m�2

(8% of the average closed LE), as shown in Fig. 7.
Day-to-day variations in model energy budget com-

ponents at time t2 are compared with the tower and
aircraft measurements in Fig. 8, with scatterplot com-
parisons in Fig. 9 and related statistics in Table 1. In-
cluded in Table 1 is the coefficient of efficiency (E) that
was proposed by Nash and Sutcliffe (1970) as a perfor-
mance metric preferable to the coefficient of determi-
nation (r2), which can indicate perfect agreement even
in the presence of systematic model biases. The aircraft
and tower data in Fig. 8 agree well, showing a secular
decrease in Bowen ratio as the crops mature. When
clumping is neglected, ALEXI significantly overesti-
mates the sensible heat flux on DOY 174 and 178. At
this time, the average fractional cover in area corn- and
soybean fields was passing through the transitional
zone of 0.4–0.6 (Fig. 4), where clumping effects are
most problematic from a modeling standpoint (Kustas
and Norman 2000a). Model values of latent heat are
generally bounded by the closed and unclosed tower
and aircraft fluxes, while the soil heat flux is underes-
timated early in the experiment.

When clumping predicted at the GOES view angle is
included, the ALEXI sensible heat estimates are sub-
stantially improved and G is increased as more net ra-
diation penetrates to the soil surface. Agreement in H
and LE is further improved by using the clumping in-
dices determined for a nadir view angle. This would
indicate that either the 5-km-scale clumping index is
being slightly overestimated by our techniques (or
there is some other bias in the model), or that the spa-
tially continuous ALEXI model is picking up some
higher sensible heating areas that are not being
sampled by either the tower network or the aircraft
transects. For cases B and C above, the rmsd in latent
heat predictions of 34 W m�2 approach the rmsd be-
tween the aircraft and tower flux measurements after
closure correction (30 W m�2), although the modeled
sensible heat shows larger scatter (17–22 W m�2) rela-
tive to the measurement intercomparison (10 W m�2).

It could be questioned whether the simple model pa-
rameterization of G (0.31 RNs) might be to blame for
the problems associated with H, without needing to
invoke any issues of clumping. This does not appear to
be the case. In the TSM, errors in G are generally ab-
sorbed into estimates of LE rather than H because H is
well constrained by the surface temperature data, while
the soil evaporation component of LE is determined
purely as a residual. Here, the error is clearly in H, with
a counterbalancing error of the opposite sign in G for-
tuitously yielding an adequate prediction of LE.
Clumping simultaneously solves problems with both H
and G, and seems the simplest possible explanation.

The flux observation datasets from SMACEX were
sufficiently dense (multiple towers per model grid cell)

FIG. 7. Comparison of spatially averaged tower and aircraft flux
measurements on several days during SMACEX, acquired around
the ALEXI modeling time t2 (1045 LST). Open H and LE sym-
bols indicate uncorrected measurements, while gray-filled sym-
bols represent fluxes corrected for energy budget closure by con-
serving the Bowen ratio.
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and spatially representative of average surface flux con-
ditions at the watershed scale to warrant a direct com-
parison with ALEXI output. In contrast, Anderson et
al. (2004b) compared 5-km ALEXI flux estimates with
closure-corrected fluxes from the Oklahoma Meso-
net—a sparser network with only one EC tower per
ALEXI cell—and obtained significantly larger rmsd
values of 92 and 60 W m�2 for H and LE, respectively.

The scatter in this case was strongly affected by local
surface heterogeneity around individual tower sites and
did not reflect the true accuracy of the modeled fluxes.
This is evidenced by the fact that agreement with Me-
sonet flux measurements was significantly improved (to
30–35 W m�2 rmsd) when the modeled 5-km fluxes
were disaggregated down to the scale of the tower foot-
print (Anderson et al. 2004b).

FIG. 9. Comparison of tower flux measurements with model predictions from the ALEXI model for clumping cases (left) A, (middle)
B, and (right) C, averaged over the WC study area. Open H and LE symbols indicate uncorrected measurements, while gray-filled
symbols represent fluxes corrected for energy budget closure by conserving the Bowen ratio.

FIG. 8. Time evolution of tower and aircraft flux component measurements compared with predictions from the ALEXI model for
clumping cases (left) A, (middle) B, and (right) C, each averaged over the WC study area. Tower and aircraft data are shown both as
unclosed (raw) and with an energy budget closure correction.
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c. DisALEXI

Using air temperature predictions at the blending
height from ALEXI for the three clumping cases dis-
cussed above, 5-km flux predictions over the WC wa-

tershed were disaggregated to the 120-m scale (L5 ther-
mal resolution) on DOY 174, and to 60 m (L7) on DOY
182. Nadir values of row-scale clumping were used in
DisALEXI because the Landsat view was from ap-
proximately overhead. For cases B and C, clumping
indices were assigned according to the modeling date
and pixel land class. For case A, subpixel clumping was
set to 1 for all land classes.

To correct for residual biases between the fine- and
coarse-scale thermal remote sensing data (resulting
from sensor calibration, atmospheric correction, etc.),
the Landsat radiometric temperature fields have been
adjusted with a constant offset chosen such that the bias
between reaggregated sensible heat fluxes and ALEXI
predictions of H is minimized, on average, across the
WC area. Derived offsets ranged in magnitude between
0.5° and 1.5°C. Employing this temperature normaliza-
tion technique, DisALEXI flux estimates are compared
in Fig. 10 and Table 2 with tower measurements at time
t2 on both days. The disaggregated flux values reported
here are weighted averages over the tower footprint, as
estimated with a stability-corrected version of the one-
dimensional analytical model of Schuepp et al. (1990,
1992). As with ALEXI, agreement with tower fluxes is
significantly improved when clumping is considered,
particularly for sensible and latent heating. The rmsd
errors in H and LE of 30–40 W m�2 for cases B and C
are comparable to those obtained with DisALEXI over
generally less complex landscapes in Oklahoma, on the
order of 30–35 W m�2 (Anderson et al. 2004b).

The partitioning of the total latent heat flux by
ALEXI/DisALEXI (case C) between the soil and
canopy on DOY 174 and 182 is shown in Fig. 11, and is
qualitatively reasonable. The disaggregated fluxes

TABLE 1. Quantitative measures of ALEXI model performance
in estimating WC-averaged tower fluxes.*

Flux N O MBE rmsd r2 E
Percent

error

(W m�2) (W m�2) (W m�2)

Case A
RN 7 580 15 21 0.26 �1.02 3
LE 7 346 5 37 0.62 0.61 9
H 7 134 44 48 0.20 �5.05 33
G 7 100 �34 41 0.76 �0.29 34
All 28 290 7 38 0.97 0.96 11
Case B
RN 7 580 2 14 0.35 0.15 2
LE 7 346 �4 34 0.71 0.66 8
H 7 134 15 22 0.27 �0.30 15
G 7 100 �8 24 0.72 0.57 19
All 28 290 1 25 0.98 0.98 7
Case C
RN 7 580 5 15 0.32 0.00 2
LE 7 346 4 34 0.70 0.66 8
H 7 134 7 17 0.39 0.25 12
G 7 100 �7 24 0.72 0.58 19
All 28 290 3 24 0.99 0.99 6

* Here N is the number of observations, O is the mean observed
flux, MBE is the mean bias error (P � O), rmsd is the root-
mean-square difference between the modeled (P) and observed
(O) quantities, r2 is the coefficient of determination in a linear
regression of P on O, E is the coefficient of efficiency, and the
percent error is defined as the mean absolute difference be-
tween P and O divided by the mean observed flux

FIG. 10. Comparison of tower flux measurements with model predictions from the DisALEXI model for clumping cases (left) A,
(middle) B, and (right) C, reaggregated over the tower footprint. Open H and LE symbols indicate uncorrected measurements, while
gray-filled symbols represent fluxes corrected for energy budget closure by conserving the Bowen ratio.
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within the WC study area reflect the regional behavior
that is predicted by ALEXI—canopy transpiration in-
creases as the cornbelt greens up, while soil evapora-
tion decreases to low levels by 1 July as a result of an
extended dry down that encompassed much of the Mid-
west. Ground-based measurements made in the water-
shed during SMEX02 confirm a secular decrease in
near-surface soil moisture during this interval (Jackson
et al. 2003). When clumping is neglected, the temporal
behavior is qualitatively similar to that shown in Fig. 11,
although the partitioning shifts more of the latent heat
flux to the canopy component.

d. Evaluation of the modeling approach

The propriety of applying the series resistance rep-
resentation in Fig. 2a to a strongly clumped canopy
could be called into question. For clumping at row
scales (as in the DisALEXI evaluations), the canopy
does influence conditions at the soil surface between
the rows, and the series model is appropriate. Kustas
and Norman (1999a, 2000b) also obtained good results
in applying the clumped series version of the TSM to
cotton row crops.

The field-scale organization incorporated into the
5-km clumping estimates used in ALEXI is more prob-
lematic. Strictly speaking, the series model assumes that
the microclimate (Tac) inside a field with full-canopy

cover also prevails above the bare soil in a neighboring
fallow field. While this is obviously not the case, result-
ing errors in representation appear to be offsetting on
the watershed scale, yielding good comparison with
tower and aircraft flux measurements. The fact that the
ALEXI flux disaggregation process (which treats veg-
etated and bare fields as independent patches) is giving
good agreement at the tower footprint scale is further
proof that the 5-km flux estimates are reasonable.

These results suggest that this economical approach
to accounting for hetereogeneity in the TSM works well
over the agricultural landscape studied here, with the
advantage for large-scale applications being that the
same equations can be applied to both clumped and
homogeneous canopies. The extreme contrast in condi-
tions that is present within the WC study area near the
beginning of the experiment [�G(0, 0) 0.5] provides a
good test of this modeling framework. Future evalua-
tions will be conducted over clumped landscapes in
more arid regions.

e. Implications for routine flux modeling

As demonstrated above, the nonuniform distribution
of vegetation across the landscape at subgrid scales can
affect TSM flux predictions during periods when spatial
contrasts in vegetation cover are strong. In the row
crops studied here, clumping appears to be problematic
for a relatively short portion of the growing season as
the scene-averaged cover fraction passes through 0.5.
This is likely an issue that is common to most thermal-
based remote sensing algorithms that require consistent
temperature and vegetation cover inputs. A methodol-
ogy for assessing vegetation clumping at many scales
using routine satellite data will, therefore, be of great
benefit.

Lacaze et al. (2002), Roujean and Lacaze (2002), and
Chen et al. (2003) describe methods for retrieving
clumping indices from the land surface bidirectional re-
flectance distribution function (BRDF) as measured by
airborne and spaceborne Polarization and Directional-
ity of Earth Radiation (POLDER) instruments. These
same techniques have also been applied to MODIS
BRDF products (J.-L. Roujean 2004, personal commu-
nication). This approach has the advantage that it does
not require subpixel information; the subpixel canopy
structure is inferred by looking at the canopy from mul-
tiple view angles, rather than at higher spatial resolu-
tion. Maps of MODIS-derived clumping index are be-
ing assessed in comparison with the detailed ground-
and Landsat-based measurements described here, and
with data collected in other biomes around the world.
Preliminary results from these comparisons are encour-
aging and will be conveyed in upcoming publications.

TABLE 2. Quantitative measures of DisALEXI model perfor-
mance in estimating fluxes measured at individual EC towers in
the WC study area; N, O, MBE, rmsd, r2, E, and percent error are
the same as in Table 1.

Flux N O MBE rmsd r2 E
Percent

error

(W m�2) (W m�2) (W m�2)

Case A
RN 19 582 �2 17 0.31 �0.06 2
LE 15 376 �42 50 0.83 0.44 11
H 15 127 48 56 0.57 �0.47 39
G 20 86 �8 23 0.68 0.62 23
All 69 295 �2 38 0.97 0.97 10
Case B
RN 19 582 2 17 0.29 �0.04 2
LE 15 376 �22 41 0.81 0.61 9
H 15 127 15 32 0.63 0.52 20
G 20 86 10 25 0.63 0.61 23
All 69 295 2 29 0.98 0.98 8
Case C
RN 19 582 4 18 0.30 �0.18 2
LE 15 376 �15 38 0.81 0.67 9
H 15 127 9 30 0.61 0.57 19
G 20 86 11 25 0.63 0.54 23
All 69 295 3 28 0.98 0.98 7
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6. Conclusions

A simple technique has been described for quantify-
ing vegetation clumping apparent at multiple scales and
viewing angles over an agricultural landscape, using
ground-based measurements of canopy architecture
and maps of LAI created from Landsat visible/NIR im-
agery. Incorporation of the derived clumping indices
into the TSM-based modeling system improves flux
predictions at both the watershed and tower foot-
print scales for periods when the average fractional veg-
etation in the scene is around 50%. At the watershed
scale, model performance has been assessed in com-
parison with spatially averaged flux measurements
acquired with airborne- and tower-based EC systems,
while disaggregated fluxes were compared directly

with flux data from individual towers. The inclusion
of clumping effects reduces the overestimation of
sensible heat resulting from an inaccurate assessment
of the amount of bare soil visible to the thermal sen-
sor providing the surface temperature inputs to the
TSM.

While studied here in the context of the TSM, clump-
ing may play a role in many thermal-based remote sens-
ing models because it fundamentally affects the rela-
tionship between surface temperature, vegetation
cover, and view angle. In future work, we will investi-
gate the impact of integrating maps of vegetation
clumping, derived from high-resolution VIS/NIR veg-
etation indices or POLDER/MODIS BRDF data, into
an operational application of the ALEXI model over
the continental United States.

FIG. 11. Maps of canopy transpiration (LEc) and soil evaporation (LEs) for DOY (left) 174 and (right) 182, created with the ALEXI
model at 5-km resolution over the upper Midwest, and disaggregated to 120 (174) and 60 (182) m over the WC watershed with the
DisALEXI algorithm. Gray cells have been flagged because of either cloud contamination or model convergence failure.
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APPENDIX

Angular Dependence of Clumping Index in Row
Crops

The dependence of the clumping index on zenith
angle (�) can be estimated with

���� 	
�0 �max

�0 � ��max � �0� exp�k � p�
, �A1�

where p 	 3.8–0.46D, D is the ratio between the canopy
height and the nominal clump width (h/w), and k de-
pends on stand architecture but is approximately �2.2
for a wide variety of forest canopies (Kucharik et al.
1999). For the corn and soybean row crops sampled
during SMACEX, the ratio of canopy width to height
was near unity so that p  3.34. In row crops and other
anisotropic stands, the apparent clumping index will
also vary azimuthally. Here, we suggest empirical forms

for azimuthal dependence in the parameters k and �max

that reproduce the expected behavior of �(�, �).
The parameter k controls the response in clumping

index to changing view zenith angle. In a row crop
viewed perpendicular to the row (� 	 90°), � will vary
slightly with increasing view zenith angle until the line
of sight starts to increase a row, and will increase
sharply thereafter (see Fig. A1). The cutoff zenith angle
will decrease as the crop matures and the vegetated
rows expand. This response was modeled over the full
range in fveg (0–1) based on simple geometric consid-
erations, assuming that the row maintains a square
cross section as fveg (and, therefore, �0) increases. A
simple power-law equation for k as a function of �0 was
then fit to this modeled behavior, giving

k⊥ 	 ��0.3 � �1.7 �0�14� �A2�

for azimuthal views perpendicular to the row.
Next, a functional form was found describing the ex-

pected variation of �max with azimuth angle (� ). We
expect that �max will approach unity for an azimuth
view perpendicular to the row (� 	 90°), and �o for a
parallel view to the row (� 	 0°; i.e., no significant
variation in � with zenith angle when viewed down the
row, assuming the vegetation in the row is unclumped).
Between these limits, geometric analysis leads us to a
form

Figure A1. Model representation of apparent clumping index in corn and soybean row
crops as a function of view zenith and azimuth angles (for case fveg 	 0.5 and F 	 1.5).
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�max 	 �0 � �1 � �0��sin��0.05. �A3�

Finally, we must adjust Eq. (A2) to incorporate an
appropriate azimuthal dependence for k. For a given
set of azimuths, we can estimate the expected cutoff
zenith angle based on our idealized square row. As we
move toward a lower � (more parallel view), the cutoff
occurs at increasingly higher values of �, until at � 	 0
there is no cutoff (see Fig. A1). The expected behavior
can be reproduced with

k 	 ��0.3 � �1.7 �0 �sin��0.1�14�. �A4�

The above equations were developed based on 76-cm
row spacing for corn and 38-cm row spacing for soy-
bean.
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